Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Digital System Design using Verilog**

Max. Marks: 100 Time: 3 hrs.

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1	a.	What is meant by design	methodology?	Enlist	the basic	steps c	of design	methodology with
		help of a flowchart.						(12 Marks)

Explain the concept of real world circuit for, i) Static load levels ii) capacitive and propagation delay.

(08 Marks)

- Why it is better to use a low level logic level rather than a high logic level? Explain. 2
 - (04 Marks) b. What is bit flip? How to deal with invalid code in the design. (06 Marks)
 - c. Develop a verilog model for a 7-segment decoder that includes an additional input, "BLANK", that overrides the BCD input and causes all segment not to lit. (10 Marks)
- Explain and implement a 4-bit carry look ahead adder circuit. (06 Marks) 3 a.
 - Develop a verilog model of an adder/subtractor for 12-bit unsigned binary numbers. The circuit has data inputs x and y, a data output s, a input mode that is 0 for addition and 1 for subtraction, and an output ovf unf that is 1 when an addition overflow or a subtraction (06 Marks) underflow occurs.
 - c. Prove that negating a signed integer X is nothing but 2's compliment of X. (05 Marks)
 - d. What number is represented by the fixed-point binary number 01100010, assuming the (03 Marks) binary point is four places from the right?
- Design and develop circuit and code for decode counter. (05 Marks)
 - Develop a verilog model of a de-bouncer for a push button switch that uses a de-bounce (10 Marks) interval of 10ms. Assume the system clock frequency is 50MHz. (05 Marks)
 - Explain about sequential datapath and control in digital design.

PART - B

- (10 Marks) Explain different memory types. (10 Marks)
 - b. Write about: i) parogrammable array logic ii) FPGAs.
- Explain the elements of embedded computer with a neat diagram. (10 Marks)
 - Briefly explain the interfacing with memory with an example. (10 Marks)
- Write a short note on: 7
 - i) Multiplexed bases
 - (10 Marks) ii) Open drain bases.
 - b. Explain the serial transmission technique. Also explain the three basic ways in which we can (10 Marks) synchronize the transmitter and receiver.
- With a neat diagram and flow chart explain the design flow including hardware/software 8 (10 Marks)
 - b. Write a note on design optimization.

(10 Marks)